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Abstract
The aim of this research is to determine staffing requirements as well as shift scheduling, with the objective of maximizing the
expected contribution from the venue. We specifically consider theaters where demand at concession stands is non-stationary,
being largely dominated by the showtimes, the days of the week and the movie types. Determination of the number of workers
and their shift in such facilities can be considered as a venue management problem. As one of the distinctive characteristics
of our study, we maximize the expected contribution of venue operations while combining shift scheduling in a mathematical
model. In addition to the objective function, shift scheduling differs from that in the standard literature, as shift beginning and
end times are not restricted. Because of the highly variable demand in the venue management problem considered, flexible
shifts are used, with flexible beginning and end times, as long as workers meet the specifications of the type to which they
belong. We prove that the venue management problem under consideration is NP-complete. Under mild conditions, we show
that the binary requirements of some of the variables in the model can be relaxed. Computational results of a case study are
provided.

Keywords Venue management · Revenue · Tour scheduling · Shift scheduling

1 Introduction

In theaters, demand at concession stands is non-stationary,
being largely dominated by showtimes. Demand peaks can
be observed in particular before shows and during intermis-
sions, with low to almost no demand at other times. In parts of
Europe, movies in large (multiplex) theaters are shown with
a 10-min intermission, during which demand peaks are fre-
quently observable; thus management of concession stands
becomes a critical issue. Additionally, since there is a lim-
ited amount of time before movies and during the breaks, it
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is important to serve and satisfy the customers during these
10–15-min periods in order to receive revenue.

Demand at concession stands is also highly variablewithin
a weekly period. More demand can be observed during
evenings than daytime and during weekends than on week-
days. Since movie schedules are usually updated on Fridays,
it is possible to consider the demand at concession stands as
cyclic—with a weekly cycle from Friday to Friday in this
case.

The operation of revenue-making service facilities in
an airport resembles that of concession stands. Again, the
demand for the service facility is a function of other sched-
ules, and is highly variable within a day and between days of
theweek. Determining the number ofworkers and their shifts
can be considered a venue management problem as well.

The aim of this research is to turn the above-described
venue management problem into a tour scheduling problem
and to determine staffing requirements and worker shifts,
with the objective of maximizing the net contribution from
the concession stands.

Worker scheduling has a long history in the operations
research literature. Ernst et al. (2004a, b), Alfares (2004)
and Van den Bergh et al. (2013) all provide detailed reviews
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and bibliographies of worker scheduling literature and group
them according to problem classifications, application areas
and solution methods. Demand modeling, days-off schedul-
ing, shift scheduling, tour scheduling, task assignment, shift
assignment and workforce planning are all problem classifi-
cations under worker scheduling. Worker scheduling covers
awide range of applications including transportation (airline,
bus and railway), call centers, nurse scheduling, healthcare
services, financial services and manufacturing. To tackle
these problems, a vast array of exact and heuristic solutions
are employed.

In one of the earlier attempts, Buffa et al. (1976) in their
seminal work proposed the following systematic approach to
worker scheduling, and most subsequent research literature
followed this approach:

1. Forecast demand,
2. Convert demand forecasts into staffing requirements
3. Schedule shifts
4. Roster workers to shifts.

In this study, we focus on steps 2 and 3 simultaneously.
As one of the distinctive characteristics of our study, we opti-
mize staff requirements (rather than ensuring that we reach a
certain service level). Hence, we maximize the contribution
of venue operations (contribution defined as revenue minus
cost of workers) while combining shift scheduling in a math-
ematical model. This is one of the major differences in a
venue management problem compared to a more standard
formulation, where labor costs are minimized subject to a
given service requirement. In addition to the objective func-
tion, shift scheduling is differs from the standard literature
in that beginning and end times of shifts are not restricted,
allowing us to start a shift for a worker at any time (possibly
limited to some reasonable values). Given the high variabil-
ity in demand in the venue management problem considered,
flexible shifts are used,with flexible beginning and end times,
as long as the amount of time workedmeets the requirements
for the specific worker types.

Section 2 summarizes the relevant literature and details
the problem we consider. In Sect. 3, we present and discuss a
mathematical model for the stated problem. The formulation
contains constraints satisfying the requirements for different
types of workers in terms of the number of days and spe-
cific labor regulations and contractual agreements. We prove
two results: the first is an optimality cut on the formulation,
and the second is a structural property that relaxes some of
the binary variables in the model as continuous under the
concavity assumption of the revenue function. In Sect. 4, we
present an approach for modeling demand and venue opera-
tions considered as the case under study. InSect. 5,wepresent
the computational complexity status of the problem and show
that even in its simplest form, it results in an NP-complete

problem. In Sect. 6, we provide the results of extensive com-
putational studies to show the efficacy of the approach for the
case study and to provide insights. Lastly, Sect. 7 summarizes
the contributions of the research and presents conclusions.

2 Details of the venuemanagement problem
considered and literature review

We consider a venue management problem where expected
revenue received per unit of time is a function of the
number of workers present at that time. We solve the con-
tribution (expected revenue less staff costs) maximization
problem while setting shifts to be utilized, schedules of
shifts and staffing levels for each shift. Workers are available
with varying capacities and costs, called types. Examples
are full-time (with different hour requirements/week, over-
time possibilities and costs), part-time (with different hour
requirements/week and costs) and other possibilities which
apply to venues considered. We assume that workers are
homogeneous with respect to skill. In other words, they can
serve an equal number of customers per unit time, but they
vary with respect to the number of hours worked as well as
their work patterns.

We assume that there are several worker types, where a
type is identified by the working days (not necessarily con-
secutive) in the week and the number of working hours per
workday shift. A particular worker typeworks the same num-
ber of hours perworking day.However, two shifts of the same
type have the flexibility to start at different times on two dif-
ferent working days, i.e., may have differing patterns. For
example, there might be full-time workers taking weekends
off and working 8h per day. These workers may start the
shift at 8:00 a.m. on Monday, take noon off and finish off at
5:00 p.m. Some of these workers may follow Monday’s pat-
tern on Tuesday, and some may start their shift at 9:00 a.m.
on Tuesday and finish off at 6:00 p.m. Each worker type will
also have an associated wage for the planning horizon.

Time-related constraints are imposed to ensure that the
regulations and the total workload designated for each type
are satisfied.

As the problem is contribution maximization, we are not
expected to be concerned with over- or understaffing. How-
ever, if needed, constraints on various service levels can be
included in the model.

The demand for venuemanagement considered is stochas-
tic and dynamic. Thus, a transient analysis of such queues is
needed to determine the demand for the concession stands
during different breaks. This adds further challenges to our
problem.

General personnel schedulingproblems are covered exten-
sively in the literature. Numerous problem types are consid-
ered, and often many commonalities exist between different

123



www.manaraa.com

Journal of Scheduling (2019) 22:69–83 71

classifications. Van den Bergh et al. (2013) has a recent
review paper that covers various types of problems dis-
cussed in the literature. We study the literature for the
above problem under various subtitles: tour scheduling; shift
scheduling; scheduling problems for venues as well as for
hospitality and tourism, and retail; and related problems with
regard to profit maximization objectives. We complete the
literature review by summarizing the closely related work
and issues regarding systems with stochastic and dynamic
demand.

In tour scheduling problems, off-days and shift schedules
are determined for a roster horizon.Brusco and Jacobs (2000)
and Rekik et al. (2004) provide compact formulations for the
tour scheduling problem where tours are considered to be
continuous. Ours is a type of tour scheduling problem where
tours are not continuous, however, as the venue considered
does not operate 7/24. We consider possible working pat-
terns where daily start times may vary for a worker, and
hence consider a weekly plan, resulting in a “tour.” Jacobs
and Brusco (1996) formulate a weekly tour scheduling prob-
lem with a compactly described constraint set. Brusco et al.
(1995) present a tour scheduling problem where there are
restrictions for allowable work patterns. Cezik et al. (2001)
consider constraints due to a union contract and describe the
associated constraints in a network flow framework. In con-
trast to previous studies, they are able to handle the restriction
on the difference between the start times of two consecu-
tive shifts. In all of the above studies, unlike our our work,
the staff demand requirements to be satisfied are fixed, and
the objective function is to minimize the total labor cost.
While covering demand, Felici and Gentile (2004) consider
a staff satisfaction maximization objective in which the lik-
ability of two consecutive pairs of shifts is expressed by
a positive weight. The authors also study the associated
polyhedron. With our flexible shift characterization, we can
handle all of the above-mentioned limitations on the work
patterns.

The shift scheduling problem, a subproblem of the tour
scheduling problem, is another topic of interest, where shifts
are plannedwith details such as breaks. Typically, shift struc-
tures are pre-specified. Thompson (1995) is an early and a
comprehensive example.Our flexible shifts identified by type
and start time are of a similar flavor to those in this study.
Aykin (2000) compares different modeling approaches for
the problem. van Veldhoven et al. (2016) consider a person-
nel shift scheduling problem with more complicated shift
structures. Mattia et al. (2014) propose a robust optimization
framework for shift scheduling, motivated by call centers
where robustness is considered over workforce demand val-
ues. Extending the aboveproblem,DahmenandRekik (2014)
consider heterogeneous workers, whereas Boyer et al. (2013)
consider a shift scheduling problem with complicated task
structures and heterogeneous workers. Defraeye and Van

Nieuwenhuyse (2016a) propose a branch-and-bound algo-
rithm for shift scheduling under stochastic non-stationary
demand. Again, in all of these studies, workforce demand
requirements to be satisfied are fixed, and thus the objective
function is to minimize costs.

With regard to the area of application, as described by
Ernst et al. (2004b), the problem we consider fits to a venue
management problem largely arising in airport-related staff
scheduling. However, hospitality, tourism or retail sectors
are reasonable fits as well. The literature on venue man-
agement and hospitality and tourism problems contains a
number of examples for determining staffing levels for dif-
ferent applications. These include determining staffing levels
at a police communication center Chen (2000), immigra-
tion personnel scheduling for given flight schedules Littler
and Whitaker (1997), personnel scheduling for a fast food
establishment Love andHoey (1990), airport personnel plan-
ning Mason et al. (1998), freight handling personnel at an
airport Nobert and Roy (1998), personnel scheduling truck
loading/unloading with a known schedule Sarin and Aggar-
wal (2001), scheduling of airport personnel by an airline
Schindler and Semmel (1993), and scheduling of cleaning
crews for airlines Stern and Hersh (1980). However, none of
the above studies represents a system with a direct revenue-
making situation.

We now review studies where the motive is to maximize
profit, and hence the workload to be covered becomes a
decision variable rather than a constraint. One stream of
the literature does not deal with shift scheduling problem,
but determines staffing requirements under various assump-
tions regarding demand and other pertinent issues. Ren and
Zhou (2008) consider the role of effort exerted relative to
increased profits. Lam et al. (1998) use a sales response
model with store traffic forecasting to determine the size
of the workforce. Similar ideas are implemented by Mani
et al. (2015) for retail environments and Hampshire et al.
(2009) for call centers. Chapados et al. (2014) study a retail
store environment from the perspective of sales staff schedul-
ing to maximize profits. The expected revenue curves are
linearized after a detailed demand/revenue modeling. The
attempt is to model expected revenue as a function of the
number of workers; we take a similar path. They make use of
automata and constraint programming in order to represent
feasible shifts as words over an alphabet. As a contribution,
we allow the use of such general revenue function within a
direct and more efficient mathematical programming frame-
work.

Another stream of literature attempts to obtain a solu-
tion to the tour scheduling problem, like we do. One of
the early attempts to deal with this problem is Thompson
(1997). The study considers an incremental structure for
each additional worker affecting the service beyond a mini-
mum level, instead of using a revenue function, which does
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not fit to the applications considered in that study. Kabak
et al. (2008) propose a two-stage model: In the first stage, a
sales response model is used as an input to a mathematical
programming model. In the second stage, a mathematical
program with new input is solved iteratively through the
use of a simulation model for the validation of the sales
response function. The mathematical programming model
is a cost minimization model, with the flexibility of hourly
wages. An arbitrary number of fixed shifts can be consid-
ered, and both part-time and full-time workers are allowed.
Note that hourly requirements come from the sales response
model. Finally, Helber and Henken (2008) consider a profit-
oriented shift scheduling problem for a call center. Here, the
demandprocess is quite sophisticated, allowing for stochastic
dynamic demand with skills-based routing, impatient cus-
tomers and retrials. However, the shift scheduling problem
considered is relatively simple, allowing for only a small
number of shift types.One can see that there are some similar-
ities between the above studies and our work. Nevertheless,
the problem we described at the beginning of this section
has features which are not covered by any work mentioned
above.

Various structures of demand are considered in the liter-
ature. In general, we consider a stochastic dynamic demand
structure with abandonment. Studies by Littler andWhitaker
(1997) and Sarin and Aggarwal (2001) have similarities to
ourswith respect to demand structure, as they dealwith a very
variable demand flow that is a function of other decisions
(not necessarily independent or exogenous). Additionally,
in our problem, stochastic variability of demand is rela-
tively high. For example, we observe abandonment, which
is not the case in airport operations. Aksin et al. (2007)
review possible abandonment behaviors, and consider a lin-
ear relation between waiting time and the probability of
abandonment. The issueoffinding customer demand requires
a thorough analysis of the associated stochastic process for
demand. Please refer to a recent review by Defraeye and Van
Nieuwenhuyse (2016b), where approaches for determining
non-stationary demand structures for service are considered
for staffing and scheduling decisions. Our problem differs
from the above literature, as we are merely seeking transient
results.

In our models, we identify worker types by the number
of workdays per week and working hours per workday. This
approach is flexible enough to incorporate different types of
shift pattern requirements that arise from considering human
factors as well as work regulations. Unlike the bulk of the
existing literature, we schedule workforce so as to generate
revenue. With the realistic assumption that the revenue gen-
erated will be a concave function of the workforce, we are
able to show that the binary requirement of a large number of
variables can be relaxed in the search for the optimal solution,
resulting in significant CPU time savings.

3 Notation andmathematical model

In this section, we provide some background information on
our problem and introduce the notation that will be adopted
throughout the text.

Let S = {1, . . . , S} represent a set of time-cells. In our
case study, the planning horizon is 1 week. Within the week,
theworkers work a specific number of days, andwithin a day,
a specific number of hours. In other words, the time-cells cor-
respond to hour-day combinations, i.e., S = 14×7 assuming
that there are 14 working hours per day. However, depending
on the planning horizon and the modularity of the shifts, the
definition of time-cells can change. D = {1, . . . , D} is the
set of days in the planning horizon,Q = {1, . . . , Q} is the set
of available workers at any time-cell, and T = {1, . . . , T }
is the set of different types of workers available. Note that,
for the sake of convenience, we keep track of the time-cells
and days separately. Also note that we allow for an arbitrary
number of working hours for a worker type. We assume that
each day he/she has the flexibility of starting at any time
of day (given that the considered type is working that day),
provided that there are a sufficient number of hours to work
(specified by the worker type on that day) until the closing
time. For example, a worker type might work only on Tues-
days and Wednesdays, each with 4h. Any worker with this
work pattern is allowed to start anytime on those days within
the first 11 time-cells. Another worker type might work on
Tuesdays and Thursdays for 4h each. With this approach,
we do not have to explicitly consider breaks, as they can be
embedded in the type information.

Parameters:

Dt = set of days a type t worker works during the planning

horizon, t ∈ T ,

I t (d) = set of available starting time-cells for a type t worker

t ∈ T during day d ∈ Dt ,

I t (s) = set of starting time-cells which make type t worker,

t ∈ T , available during time-cell s, s ∈ S,

Ct = salary of each type t worker for the planning horizon,

t ∈ T ,

Ws = threshold value for the waiting time, s ∈ S,

Ls = threshold value for the number of lost customers,

s ∈ S,

Ns = threshold value for the number of customers waiting

longer than Ws , s ∈ S.

For every s ∈ S, k ∈ Q:

Wsk = expected waiting time per customer if k workers

are used in time-cell s,
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Lsk = expected number of customers lost if k workers

are used in time-cell s,

Nsk = expected number of customers to wait more than

Ws if k workers are used in time-cell s,

Vsk = expected revenue generated if k workers are used in

time-cell s.

An employee type t is identified by the specific days, Dt ,
and the specific time-cells in those days, ∪d∈Dt I t (d), that
workers of this type may start work.
Decision variables:

xsk =
⎧
⎨

⎩

1, if the number of workers working in time-cell s
is k

0 otherwise

s ∈ S, k ∈ Q,

yts = number of type t workers starting work on time-cell s

t ∈ T , s ∈ S,

λt = number of type t workers to be paid during a planning

horizon t ∈ T .

We shall assume that revenue is a non-decreasing function
of the number of workers, and that waiting times and number
of lost customers are non-increasing functions of the number
of workers. In other words, we have:

Vsk ≤ Vsk′ , Wsk ≥ Wsk′ , Lsk ≥ Lsk′ and

Nsk ≥ Nsk′ s ∈ S, and k, k′ ∈ Q : k ≤ k′.

Thevenuemanagement problemseeks aprofit-maximizing
workforce schedule that satisfies the service level require-
ments. To this end, the following integer programming (IP)
model determines, for each worker type t and for each work-
ing day d ∈ Dt of this worker type, the size of the workforce
and their daily start times.

max
∑

s∈S,k∈Q
Vskxsk −

∑

t∈T
Ctλt (1)

s.t.
∑

k∈Q
xsk ≤ 1 s ∈ S, (2)

∑

k∈Q
kxsk ≤

∑

c∈I t (s),t∈T
ytc s ∈ S, (3)

∑

s∈I t (d)

yts ≤ λt d ∈ Dt , t ∈ T , (4)

∑

k∈Q
Wskxsk ≤ Ws s ∈ S, (5)

∑

k∈Q
Lskxsk ≤ Ls s ∈ S, (6)

∑

k∈Q
Nskxsk ≤ Ns s ∈ S, (7)

xsk ∈ {0, 1} s ∈ S, k ∈ Q, (8)

yts ≥ 0, integer s ∈ S, (9)

λt ≥ 0, integer t ∈ T . (10)

The objective function (1) corresponds to the profit for
the planning horizon, which is the total revenue generated
less the wages to be paid to the workers. Constraints (2) and
domain restrictions (8) jointly ensure that the value of vari-
able x will index the number of workers working for each
time-cell of the planninghorizon.Note thatweallow for some
time-cells to have no workers if it benefits the overall profit.
Constraints (3) ensure that the number of workers counted
as working during time-cell s cannot exceed the number of
workers whose daily working hours coincide with the spe-
cific cell s. Specifically, the left-hand side of these constraints
corresponds to the size of the workforce on time-cell s, and
the right-hand side sums the number of workers that work at
time s, i.e., and their start times ensure that they will work
through time s. Constraints (4) guarantee that the number
of workers of each type working in the planning horizon,
i.e., λt value, cannot be lower than the number of work-
ers starting each day. Constraints (5)–(7) jointly enable the
intended quality of service to the customers. Finally, (8)–(10)
are domain restrictions.

Without loss of generality, we may assume that the same
number ofworkers of a given typewill start work everywork-
ing day particular to that type. More formally,

Lemma 1
∑

s∈I t (d) y
t
s = λt is an optimality cut to (1)–(10)

for each d ∈ Dt , t ∈ T .

Proof Note that an optimality cut for a model is a constraint
which is satisfied by at least one optimal solution of this
model. Even though there would be feasible solutions vio-
lating this constraint, we may add it to the constraint set of
the model without changing the optimal value.

Let (x, y, λ) be an optimal solution to (1)–(10). Assume
for some t̂ and d̂ ∈ Dt̂ , inequality (4) is not tight, i.e.,

∑

s∈I t̂ (d̂)

ys
t̂ < λt̂ .

Since both y and λ are integral vectors, the difference λt̂ −
∑

s∈I t̂ (d̂)
ys t̂ is integer-valued. Let ŝ ∈ I t̂ (d̂). Then, (x, ȳ, λ),

where

ȳts =
{
yts for s �= ŝ, t �= t̂
yts + 1 for s = ŝ, t = t̂

solves (1)–(10) optimally as well. Proceeding in this fashion,
alternative optimal solutions can be attained satisfying the
constraint set (4) tightly. �	
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Lemma 1 states that inequalities (4) can be replaced with
the following equations:

∑

s∈I t (d)

yts = λt d ∈ Dt , t ∈ T . (11)

In our computations, we replaced inequalities (4) with equal-
ities (11).

Lemma 2 Constraints (5)–(7) in the above model can be
replaced with an equivalent form

∑

k∈Q
kxsk ≥ λs s ∈ S (12)

where λs = min{k ∈ Q : Wsk ≥ Ws, Lsk ≥ Ls and Nsk ≥
Ns}.
Proof Each of the constraints (5)–(7) provides a minimum
service level requirement on the number of workers. Con-
straint (12) simply replaces these three constraints with the
bottleneck service level requirement. �	

In addition to the optimality cut provided by Lemma 1, the
integer programming model (1)–(10) has a strong structural
property when the revenue is a concave function of the num-
ber of workers. In particular, once the decision variables y’s
take integer values, the binary nature of the index x variables
can be relaxed. We shall prove this property for a general IP
form, which will then imply the result for the IP in consider-
ation.

Consider the following integer programming model, say
M,

max
n∑

i=1

f (i)ui (13)

s.t.
n∑

i=1

ui ≤ 1 (14)

n∑

i=1

iui ≤ b1 (15)

n∑

i=1

iui ≥ b2 (16)

u ∈ {0, 1}n . (17)

where f : {1, . . . , n} → R≥0 and b1, b2 ∈ {1, . . . , n} with
b2 ≤ b1. Let RM be the linear programming relaxation of
this model where constraints (17) are replacedwith 0 ≤ ui ≤
1 i ∈ {1, . . . , n}.
Theorem 1 If f is a concave function on {1, . . . , n} and
b1, b2 ∈ {1, . . . , n}with b2 ≤ b1, then there exists an optimal
solution to RM, say u∗, such that u∗ ∈ {0, 1}n.

Proof Let ũ /∈ {0, 1}n be an optimal solution to RM.We shall
construct u∗ ∈ {0, 1}n as an alternative optimal solution.

Define u∗ as

u∗
i =

{
1 for i = b1
0 for i �= b1.

Clearly, u∗ is feasible for M. Moreover, since f is a concave
function,

n∑

i=1

f (i)u∗
i = f (b1) ≥ f

(
n∑

i=1

i ũi

)

≥
n∑

i=1

f (i)ũi

and hence u∗ is also optimal for M. �	
For every time-cell s ∈ S, define the following functions:

Vs : Q → R≥0 such that Vs(k) = Vsk for every k ∈ Q.

Corollary 1 If for every s ∈ S, Vs is a concave function on
Q, then the integrality of binary x variables in (1)–(10) can
be relaxed.

Proof Note that once the y and λ variables are fixed, the
model (1)–(10) decomposes for each s ∈ S. For a feasible
y, λ to (1)–(10) and for a fixed s ∈ S, let n = Q, f (i) =
Vsi ,ui = xsi for every i ∈ {1, . . . , n}, b1 = ∑

c∈I t (s),t∈T ytc
and b2 = λs . Then, for this fixed s, the model (1)–(10) pro-
jected onto the x variables becomes a model of the form M
for which Theorem 1 implies the desired result. Note that we
should implicitly assume λs ≤ b1, for otherwise there is no
feasible solution. �	

Note that concavity of f is indeed necessary for Theo-
rem 1 to hold. Consider the small example where f (1) =
1, f (2) = 2, f (3) = 4, b1 = 2 and b2 = 0. Then, (0, 0, 2

3 )

solves RM optimally with an objective value of 8
3 which is

strictly greater than the optimal value of M, which is 2.

4 Modeling demand and venue operation

Venues that are considered in this work do not exhibit a con-
sistent demand pattern in the classical sense. Specifically,
daily demand for the concession stand in a movie theater
exhibits a huge variance, making it possible to label it even
as erratic. However, when one analyzes the pieces that make
up the total demand for a concession stand, a simpler picture
can be observed: What drives the demand for a concession
stand during the intermission of a certain movie is a function
of (i) the type of themovie, (ii) time of the day, (iii) day of the
week and (iv) week of the year. Venue managers will most
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likely have sufficient data to estimate the probability distribu-
tion of the number of incoming customers to the venue and
the proportion of those asking for service at a concession
stand during intermission as a function of the type of movie
and its showtime. Moreover, it has been observed that the
revenue obtained per customer served can be assumed to be
dependent only on the type of movie, practically constant per
customer. As a result, demand for customers visiting a con-
cession stand during an intermission is time-dependent and
stochastic. Given this distinction, we model total demand by
analyzing demand for each intermission of each movie and
build up for the concession demand for each time-cell. For
us, it is important that we can compute the demand/service-
associated parameters desired by the mathematical model.
The following steps outline the approach used to attain esti-
mates for the parameters Wsk, Lsk, Nsk and Vsk for each
s ∈ S, k ∈ Q.

1. Information on movies to be screened and their show-
times is available for the planning horizon.

2. For each movie and showtime combination, demand dis-
tribution for the size of audience can be estimated using
past data.

3. One can find the intermissions of those movies which
will fall into each time-cell.

4. The concession stand operates as a queuing system for a
given time-cell. If such a queuing system can be modeled
and analyzed, the parameters considered in the mathe-
matical model can be computed.

5. Note that the computation in step 4 should be repeated
for each time-cell and for each possible number of work-
ers considered. Specifically, one can estimate Wsk, Lsk,

Nsk and Vsk for each s ∈ S, k ∈ Q.

Most of the staffing problems in the literature assume a
continuous arrival rate for service, enabling the use of a
steady-state analysis. In the venue management problem
considered, on the other hand, there is a limited time (inter-
mission) during which customers can be served. Therefore,
steady-state analysis is not meaningful; a complete tran-
sient analysis is needed. Moreover, some customers are lost
(customers may abandon) as the anxiety of waiting may
increase closer to the end of intermission time. Addition-
ally, customers come out almost simultaneously as a group
at the intermission, and hence the queue has practically bulk
arrivals. This is a hard queuing system to model and analyze.

A queuing model of the concession stand can be built
under different assumptions. Once a reasonable model is
available, having transient analysis compared to steady-state
analysis will ease the computational requirements. One can
model the problem using simulation, or an analytical model
with some assumptions can be utilized. As a heuristic, we
consider a simple analytical model to estimate the required

parameters. Details of the model are given in the Appendix.
Using the prescribed model in the Appendix, computations
required in steps 4 and 5 of the outline can be carried out,
and thus parameters of the mathematical model presented in
Sect. 3 can be estimated.

5 Computational complexity of the problem

In this section, we provide the computational complexity
status of the problem under consideration. Consider, with-
out loss of generality, the simple case where workers of the
same type with potentially different starting times are con-
sidered as different types. In other words, with a worker type,
we identify a unique starting time at each working day, and
specifically Q = T . For each s ∈ S and t ∈ T , we let
parameter

At
s =

{
1 if worker t works in period s
0 otherwise,

indicate the periods covered by each worker. Now it is possi-
ble to view our venue management problem as the following
optimization problem:

max
∑

s∈S
Vs

(
∑

t∈T
At
sλ

t

)

−
∑

t∈T
Ctλt (18)

s.t.
∑

t∈T
At
sλ

t ≥ λs s ∈ S, (19)

λt ≥ 0, integer t ∈ T . (20)

The decision version of the venue management problem,
say DVMP, can be posed as (following the convention of
Garey and Johnson 1979):

Instance S, T ,Vs : {1, . . . , T } → R≥0 and λs for each
s ∈ S, Ct for each t ∈ T and P .

Question Does there exist a worker schedule meeting the
service level requirement with profit of at least P?

Consider the following minimum cover problem (MC)
which is known to be NP-complete (Garey and Johnson
1979).

Instance Collection C of subsets of a finite universe U ,
positive integer K ≤ |C |.

Question Does C contain a cover for U of size K or less?

Theorem 2 DVMP is strongly NP-complete even if there are
no service level requirements.

Proof Membership in NP is obvious, since checking the
profit level of a worker schedule can be accomplished in
polynomial time.

We proceed by showing that DVMP contains MC as
a special case. Let U = {1, . . . , n}, C = {O1, . . . , Om}
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and K constitute an arbitrary instance of MC. Consider
the following instance of DVMP. We identify periods with
the universe and workers with the subsets. Specifically, let
S = {1, . . . , n}, T = {1, . . . ,m},

At
s =

{
1 if s ∈ Ot

0 otherwise,

Ct = 1 for each t ∈ T , P = n − K and finally

Vs(q) =
{
1 if q ≥ 1
0 otherwise.

Clearly, this instance of DVMP has a solution with profit
of at least n − K if and only if the MC instance has a cover
of size at most K . �	

Since the special case of DVMP with no service level
requirements, i.e., when λs = 0 ∀s ∈ S, is NP-hard, so
is DVMP. The following result considers the special case of
DVMP when the revenue functions are linear.

Theorem 3 DVMP is strongly NP-complete even if the rev-
enue functions Vs for s ∈ S are all linear.

Proof It is easy to see that DVMP belongs to NP, since given
any worker schedule, checking whether the service level
requirement is met at a certain profit level can be done in
polynomial time.

We shall proceed as in the proof of Theorem 2 by show-
ing that DVMP contains MC as a special case. Let U =
{1, . . . , n}, C = {O1, . . . , Om} and K constitute an arbitrary
instance of MC. Consider the following instance of DVMP.
We identify periods with the universe and workers with the
subsets. In particular, let S = {1, . . . , n}, T = {1, . . . ,m},

At
s =

{
1 if s ∈ Ot

0 otherwise,

λs = 1 for each s ∈ S, Ct = |Ot | + 1 for each t ∈ T ,
P = −K and finally Vs(q) = q for each s ∈ S. With these
specifications, model (18)–(20) becomes:

max −
∑

t∈T
λt

s.t.
∑

t∈T :s∈Ot

λt ≥ 1 s ∈ S,

λt ≥ 0, integer t ∈ T .

Clearly, this instance of DVMP has a solution with profit at
least −K if and only if MC instance has a cover of size at
most K . �	

Note that if the revenue functions are linear, i.e., Vs(q) =
vsq for s ∈ S where vs ∈ R≥0, and there are no service level
requirements, then model (18)–(20) reduces to:

max
∑

t∈T

(
∑

s∈S
vs A

t
s − Ct

)

λt

s.t. λt ≥ 0, integer t ∈ T .

The optimal solution will use each worker type indefinitely
as long as the contribution to the objective is positive and
hence can be identified easily in polynomial time.

6 Computational results

In this section, we provide the results of extensive computa-
tional experiments with the data for the case study in order
to show the efficacy of the solution approach and to provide
insights.

6.1 Motivation and base data

Ourmainmotivation for performing somenumerical analysis
is to observe the advantages of using the relaxed version of
the model. Even if we show in Sect. 5 that the problem is
NP-complete, given certain real-life settings, we think that
it might be reasonable to analyze the effect of several of
the model attributes on the solution time. In this section, we
present the results of the experiments we carried out.

The source of demand data that we use in the numeri-
cal experiments is a project experience conducted at a local
movie theater center (Ahipasaoglu 2015). In our case study,
the planning period is a week, each time-cell corresponds to
an hour, and there are 14 time-cells in a day. Accordingly,
hours of a day and days of the week are two main determi-
nants of the demand data. We used a multiplicative model to
represent the data: Define Hi j as the relative weight of the
demand for the i th hour during the j th day, and Dj as the
relative weight of the demand for the j th day. Hence,

∑

i

Hi j = number of hours worked in day j, j = 1, . . . , 7

and

∑

j

D j = 7.

The data used are given in Table 1. Note that the data show
the properties mentioned in Sect. 4 and represent an average
week. Of course, depending on the specific movies shown
within the week, the pattern might change.
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The remaining data were artificially generated according
to the properties in Sect. 4. We used a concave function to
represent the revenue. LetVi j (k) denote the revenue function
for the i th hour during the j th day, and let k denote the number
of workers working in this time-cell. The following function
is used to represent the revenue:

Vi j (k) = ak + bk f Hi j D j

where a, b and f are positive constants, with f < 1.

6.2 Experimental setup

For the experiments, we need to specify a universal set for
work patterns. We made three simplifications in order to
restrict possibilities for work patterns:

• The hours worked in a day are always consecutive. Our
model will determine the starting hours.

• Work patterns are designed so that in a given day, one
can work 0, 4, 8 or 10 h.

• A worker should work at least 8 h in total during the
week.

Possible work patterns are then distinguished according to

1. Number of working days per week
2. Number of working hours per working day
3. Actual days of working
4. Hours worked during the weekdays
5. Hours worked during the weekend
6. Hours of overtime (weekday or weekend).

As a result, we defined a total of 3148 work patterns. Note
that this number does not include the start time for a worker
in a given day; hence the actual number of choices is much
greater.

We generated random instances that will select 100, 300
and 500 different work patterns among the 3148 available.
A given random stream to generate 100 work patterns was
used to generate the case with 300 (and 500) work patterns to
ensure that the patterns included in smaller-sized problems
were also included in the larger cases. This will ensure a
smaller variance when comparing the results.

We assumed that workers are homogeneous, and hence
for a standard hour they are paid exactly the same amount,
call it c per hour. However, the actual hourly wage rate is
calculated in the following manner:

1. Weekend rate per hour is twice theweekday rate per hour.
2. If one works more than 8 h a day, hours in excess of 8

are considered overtime hours.
3. Overtime rate per hour is 1.5 times the regular rate.
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As a result, one can compute the weekly wage of a worker
with the given pattern.

For the experiments, we set a = 0.5, f = 0.5, b as a uni-
formly distributed random variable in the range [8, 12], and
c as a uniformly distributed random variable in the range
[cmin, cmax ], where cmin and cmax are selected to ensure
that the generated problem does not have a trivial solution—
employ all the available workers in setQ at all times or result
in extremely negative profits.

We solved the cases with different demand structures as
well. Cases C1–C4 correspond to patterns D1–D4, respec-
tively, where D1 is as given in Table 1—demand pattern with
real data, C2 is the case where we increased the variability
by increasing the proportion of the peak demand days/hours
compared to D1. Case C3, on the other hand, is the case
where variability compared to real data is lower, and finally,
C4 is the case where demand values are taken to be identical
for all time-cells.

We use the following procedure to generate our instances:

1. Select number of work patterns (100, 300, 500)
2. Generate 10 instances with 100 (or 300 or 500) work

patterns
3. For each instance, generate 25 combinations of (b,c), five

each
4. For each (b,c) combination, use four different demand

structures as specified above.

As a result, we obtain 3000 instances of the problem. Finally,
for each instance, we first solved the problemwithout impos-
ing any service level restrictions. Then, we added service
level constraints by enforcing the condition that for each
time-cell, a minimum number of workers (at least one more
than the level obtained in the solution without the service
level requirement ensuring that the introduced service level
is always binding), bringing the total number of instances to
6000. Note that we used the same seed to generate instances,
whenever appropriate, to control the variability induced by
randomness.We solved our models using GAMS/Cplex 10.2
software on a workstation with an Intel 2.66-GHz Xeon pro-
cessor and 8-GB memory.

6.3 Effects of number of work patterns

Weanalyze the results of randomexperiments using twomea-
sures: the first is the averageCPU time (ACT), and the second
is the variability in CPU times (VCT), which is defined as

VCT = (max − min)

ACT
. (21)

The values max and min are defined either with respect to
the averages of 10 randomly generated instances as defined

in step 2 of the generation procedure (we call these batch
extremes), or using actual maximum and minimum values,
as observed by those instances (we call these individual
extremes). We use both definitions in analyzing the results.
Note that a large VCT value implies not only that run-times
will have a large variability, but also that run-times will have
a tendency to be larger, as minimum time changes very lit-
tle across the problem instances solved. Also note that VCT
values would be larger if we did not control random effects
in the instances generated.

6.3.1 Comparison based on ACT

Wesummarize the results for all instances inTable 2.With the
“Integer Model,” we refer to the IP specified by Eqs. (1)–(3),
(8)–(10), (11) and (12), whereas with the “Relaxed Model”
we have the same IP, while relaxing the binary requirements
in (8). First, note that the average CPU time increases by
219% as the problem size increases from 100 to 300 work
patterns, and 574% from 100 to 500 work patterns. A similar
increase in average CPU time is observed for the relaxed
problem. Note that the % decrease in the average CPU times
when we apply the relaxed problem is consistently lower, but
differences are not large (last column of Table 2).

When we solve the instances with service constraint, on
the other hand, the effect of the relaxed problem on CPU
time can be better observed, as the problemwith service level
constraint is expected to be harder. We summarize the results
for these instances in Table 3. First note that the growth in the
average CPU time is 247% as the problem size goes from 100
work patterns to 300 work patterns, and 591% from 100 to
500.A similar growth in averageCPU time is observed for the
relaxed problem. Note that this result is very similar to what

Table 2 Average CPU times over 3000 instances

# of work
patterns

Integer
model
ACT (s)

Relaxed
model
ACT (s)

% Decrease

100 0.98 0.89 9.20

300 3.12 2.94 5.77

500 6.58 6.03 8.35

Table 3 Average CPU times over 3000 instances with service con-
straints

# of work
patterns

Integer
model
ACT (s)

Relaxed
model
ACT (s)

% Decrease

100 1.96 1.92 1.91

300 6.80 5.52 18.88

500 13.56 10.10 25.51

123



www.manaraa.com

Journal of Scheduling (2019) 22:69–83 79

Table 4 Percentage increase in ACT when service constraint is added

# of work patterns Integer model Relaxed model

100 100.97 117.09

300 118.34 87.97

500 106.09 67.49

we obtained for the problem without the service constraints.
When we observe the % decrease in the average CPU times
when we apply the relaxed problem (last column of Table 3),
we now observe that the decrease % increases sharply with
problem size.

In Table 4, we provide a comparison of the results in
Tables 2 and 3, to observe the effect of service level restric-
tions on CPU. Specifically in columns 2 and 3, we record the
percentage increases in the average CPU timeswhenwe have
service constraints. For the integer formulation, the increase
is steadywith respect to problem size,whereas for the relaxed
problem, it decreaseswith problem size, a possible indication
of performance enhancement brought about by the relaxed
problem.

Finally, we check the effect of demand patterns on the
CPU time. In all numerical results for C2, the case with
greater variability than the real data, the average CPU times
of the integer and relaxed problems were the lowest. This
is expected, as the more variable the demand, the lower the
number of competing work patterns to be utilized at opti-
mality. Hence, we can solve our problems with smaller CPU
times on average. We present these results in Table 5. As can
be seen, the difference is about 12% for the integer problem
(or 14% for the relaxed problem) for 100work patterns.How-
ever, it is interesting to note that this difference decreases as
we increase the number of work patterns, as can be followed
from Table 5. Additionally, when we replicate the results of
Table 5 for the case with service constraints (not tabulated),
we observe that the differences are even much less. We think
that this observation indicates that the effect of demand pat-
tern is a lesser concern when we have larger-sized/harder
problems.

6.3.2 Comparison based on VCT

We recorded maximum CPU times for any batch of runs.
In all but a few cases, as expected, the maximums of the

relaxed problem are much less than those of the integer prob-
lem. There are some exceptions, where maximum CPU time
of a group of relaxed instances is relatively large. This is
expected, as the problem is shown to be NP-hard in Sect. 5,
and hence such instances should be observed. We believe,
therefore, that the analysis of the numerical results using a
variability measure is reasonable. We summarize the results
for all instances in Table 6. Note that the VCT measure
defined by Eq. (21) considers whether the average achieved
is in a reasonable range—in other words, can be considered
as a measure of variability. In Table 6, we present the results
based on batch maximum values as well as individual maxi-
mums (bothmaximums averaged for service and non-service
cases). The results are quite interesting and indicate the fol-
lowing:

• There is no obvious effect of problem size onVCTvalues.
The second and third columns indicate that the values are
very similar; the fifth and sixth columnsmay also indicate
this, although there is more fluctuation. We believe that
this observationmakes the use ofVCTvalues reasonable,
as the variability measure considered can be said to be
independent of the magnitude.

• We observe that the relaxed problem has smaller VCT
values—the percentage decreases are presented in the
table. This is an obvious benefit of the relaxed problem,
indicating that the CPU times recorded have a greater
tendency to be around the average than with the integer
formulation.

• Finally, theVCTfigures for individual extremesmay sug-
gest the difficulty of the problem, already indicated by
the complexity results in Sect. 5. The values for certain
instances may be arbitrarily large.

6.4 Optimal revenue as a function of problem size

In this section, we report the effect of problem character-
istics on the objective function values. Recall that problem
instances created for different numbers of work patterns are
correlated, as we first generate an instance with 500 work
patterns, and apply exactly the same selection of random
parameters, aswell as a subset of those 500whenwe are solv-
ing an instance with a lower number of work patterns. Hence,

Table 5 Effect of demand pattern, C2 with no service constraint

# of work
patterns

Integer model
ACT for all (s)

Integer model
ACT for only
C2 (s)

% Difference Relaxed model
ACT for all (s)

Relaxed model
ACT for only
C2 (s)

% Difference

100 0.98 0.86 12.24 0.89 0.76 14.61

300 3.12 2.83 9.29 2.94 2.64 10.20

500 6.58 6.16 6.38 6.03 5.70 5.47
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Table 6 Variability in CPU times over 6000 instances

# of work patterns Batch extremesa Individual extremesa

Integer
model
VCT

Relaxed
model
VCT

% Decrease Integer
model
VCT

Relaxed
model
VCT

% Decrease

100 1.96 1.43 27.06 10.88 9.59 11.89

300 2.01 1.60 20.53 13.79 13.66 0.99

500 1.94 1.13 41.79 13.86 4.83 65.13

aAverages of service and no service maximum values were taken

Table 7 Effect of including service levels

# of work patterns % Decrease in the optimal value

100 26.18

300 23.21

500 22.82

Table 8 Effect of number of work patterns on the objective function

# of work patterns % Improvement in the objective
function w.r.t. 100 work patterns

No service With service

300 8.84 12.00

500 16.68 21.17

increasing the size of the problem by allowing more work
patterns will guarantee a non-decreasing objective value. In
Table 7, we report how service level constraint affected the
objective value. Note that nearly stable percentage decreases
indicate that we were able to generate instances which are
comparable.

Finally, in Table 8 we show how the objective function
improved when we allowed for more work patterns in the
problem. Again, as expected, as we increase the number of
patternsmodeled in the problem, the objective function value
improves. In the case where we have service constraint, the
improvements are greater, indicating that there is more room
for improvement.

Finally, when we analyze the effect of demand patterns
on profitability (observed averages for 25 instances for each
of the demand patterns, considering all runs with or without
a service constraint), it was quite interesting to note the fol-
lowing: the profit obtained using the real-life demand pattern
(case C1) was better than all the others in 18, 17, and 17 out
of 20 cases for 100, 300 and 500 work patterns, respectively!
Of course, there is no explanation for this fact, other than
admiring the business side.

7 Conclusions

In thiswork,wehave considered a shift planning approach for
venuemanagement. The case that motivates us (Ahipasaoglu
2015) is a concession stand in amovie theater, where demand
is non-stationary and stochastic. Demand is known to be a
random function of the showtime, day of the week andmovie
type, necessitating a bottom-up approach to estimate the total
demand at any time interval. We propose a simple approach
for estimating the expected concession revenue from movie
customers during a single intermission given a workforce
size, and build up the total revenue for all other movies and
their intermissions if they coincidewith the same time period.
In our model, we identify worker types by the number of
workdays per week and working hours per workday. This
approach is flexible enough to incorporate different types
of shift pattern requirements necessitated by regulations and
ergonomic choices. Unlike the bulk of the existing literature,
we schedule workforce so as to generate revenue. We pro-
vide an optimality cut for our model and, with the realistic
assumption that the revenue generatedwill be a concave func-
tion of the workforce size, show that the binary requirement
of a large number of variables can be relaxed in the search for
the optimal solution. We also prove that the problem we are
considering is NP-complete. We provide extensive computa-
tional results to show the effects of our proposed relaxation on
computation time. We conclude that the proposed relaxation
works well even under moderate problem sizes. Our com-
putational results also provide some insight into the profit
obtained when we allow for more worker types. We consider
the effects of demand pattern on computation time as well as
profit.

As an extension, we can generalize the model by allowing
a continuous concave expected revenue function (as well as
continuous service functions). One can show that our formu-
lation coincides with a linear approximation of this general
structure. The generalized formulation can handle the case
where workers are allowed to be non-homogeneous.
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Appendix

The following assumptions were made on the basis of a
project experience conducted at a local movie theater cen-
ter (Ahipasaoglu 2015).

1. Venue managers have sufficient information to estimate
the probability distribution of the incoming customers to
the venue and the proportion of those asking for service at
a concession stand as a function of (i) type of the movie,
(ii) time of the day, (iii) day of the week, and (iv) week
of the year.

2. It has been observed that the revenue obtained per cus-
tomer served is a constant dependent only on the type of
movie.

3. Some customers waiting for service tend to abandon if
they are not served within a specified time. We assume
that we can estimate the times and abandonment proba-
bilities for such incidents as a function of queue size at
those times.

4. We assume that the service time for a worker is an
exponential random variable; if there are Q workers
(identical), we assume that the service rate will be Qμ,
where μ is the service rate for a worker.

5. We assume that once the intermission is over, the conces-
sion stand will close. One way to relax this assumption
is by adding an additional time after the intermission is
over.

6. We assume that customers arrive in bulk at the begin-
ning of an intermission. This is an assumption made after
observing the data. Of course, we can relax this assump-
tion and consider a case where there might be more than
one incidence for bulk arrivals during an intermission,
which will only complicate computations.

7. We assume that there is only one intermission at a time.
This assumption can be relaxed and, similar to assump-
tion 6, wewill only facemore complicated computations.

Under these assumptions, we propose a simple model for
computing the expected revenue from a single intermission.
Our variables are as follows:

μ exponential service rate of a single worker
Q number of workers

Qμ exponential service rate when there are Q workers
(approximation)

NRo number of customers that arrive in bulk to the
concession stand at the very beginning of the inter-
mission (initial queue size)

r number of abandonment incidents during an inter-
mission, where r ∈ {0, 1, . . . , R} and r = 0means
that there is no abandonment

τi time after arrival during which, if a customer is
not served, he/she will consider abandonment,
depending on the queue size, i = 1, . . . , R

Mi critical queue size at τi for individual decision, i =
1, . . . , R

NSi number of customers served between i − 1st and
i th abandonment incidents, i = 1, . . . , R (assume
the beginning of the intermission corresponds to
the 0th abandonment incident)

NRi remaining number of customers in the queue
immediately after the i th abandonment incident,
i = 1, . . . , R

pi probability for the i th abandonment incidentwhich
occurs only if NRi−1 − NSi > Mi , i = 1, . . . , R.
In other words, if the number of customers in the
queue, NRi−1 − NSi , is greater than the thresh-
old value, Mi , we will observe abandonment with
probability pi

Revenue
∑R

i=1 a NSi , where a is assumed to be a constant
revenue received per customer served for the spe-
cific movie type considered.

Note that other than the Qμ term, our decision variables
in the scheduling problem will be a function of the movie
type, time of day, day of the week, and week of the year. The
estimation process seems to be exhaustive; however, most
venues (or collections of venues) have most of the needed
data for estimation.We consider a special case where R = 2.
Hence, we use a simpler rule for abandonment.

1. At time τ1, if NR0 − NS1 > M1, then NR1 = (NR0 −
NS1)(1 − p1). Note that NR1 may not be an integer.
Without loss of generality, we replace (NR0 −NS1)(1−
p1) with (NR0 −NS1)(1− p1)�, where x� is the floor
operation taking the largest integer smaller than or equal
to x .

2. At τ1 + τ2, where τ1 + τ2 is taken as the duration of the
intermission, if NR1 − NS2 > 0, then NR2 = 0, i.e., all
unserved customers will leave the queue.

For a given number of workers, the following steps can be
carried out for computations:

(i) Let the probability distribution for the initial number of
customers asking for concession service be defined as
Pr{NR0 = i}, i ∈ I = {1, . . . , I }, where I is the set of
the possible number of concession customers.

(ii) {NS1 = j} is the event which says that j customers are
served during τ1 time units. Hence,

Pr{NS1 = j} = e−Qμτ1 (Qμτ1)
j

j ! j = 0, 1, . . . ,NR0 − 1
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Note that

Pr{NS1 = NR0} = 1 −
NR0−1∑

j=0

e−Qμτ1(Qμτ1)
j

j !

In other words, this is a truncated Poisson process.
(iii) We would like to find the distribution of N R1, which

is dependent on the distribution of NS1. Note that there
are at most two ways to arrive at an event {NR1 =
x}; we can have no abandonment and simply have x
customers remaining, or we can arrive at x remaining
customers after abandonment. Note that we take care
of non-integer values by a consistent truncation. Let

NR′
1 : represent events with no abandonment

NR′′:
1 represent events with abandonment

(a) Case with no abandonment NS1 ≥ N R0 − M1:

{
NR′

1 = x
} ≡ {NS1 = NR0 − x} and

Pr
{
NR′

1 = x
} = Pr{NS1 = NR0 − x}

for x = 0, 1, . . . , M1

(b) Case with abandonment NS1 < NR0 − M1:
We are interested in defining event

{
NR′′

1 = x
}

for x = 0, . . . , (1 − p1)N R0�.

Note thatNR1 = (NR0−NS1)(1−p1)� is a function
of the number served, NS1. NS1 may take different
values but still NR1 may not change depending on
the floor operation.
Define NSx as the set of NS1 values that yield x ,
where x = 0, . . . , (1 − p1)NR0�. Note that some
NSx may be empty.

{
NR′′

1 = x
} = ∪i∈NSx

{NS1 = i}.

Note that the above events are independent. Hence,

Pr
{
NR′′

1 = x
} =

∑

i∈NSx
Pr{NS1 = i}.

Given that two events are independent, one can write

{NR1 = x} = {
NR′

1 = x
} ∪ {

NR′′
1 = x

}
.

Therefore,

Pr{NR1 = x} = Pr
{
NR′

1 = x
} + Pr

{
NR′′

1 = x
}

for x = 0, . . . ,NR0.

(iv) The same approach can be repeated for the remaining
time period τ2, and Pr{NS2 = x} and Pr{NR2 = x} can
be found.

(v) All performance measures can be computed once the
probabilities are determined. Note that we repeat the
procedure for all NR0 values (NR0 = i, i ∈ I) and for
all numbers of workers Q.
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